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Abstract. The problem of internal oscillations of kink-type solitons in a one-dimensional easy-
plane antiferromagnet is studied by analytical methods. Apart from the Goldstone mode a second
local mode which is due to the coupling between in-plane and out-of-plane spin components has
been derived. For typical experimental conditions in a model system likg)¢S#nCl; (TMMC)

the frequency of this mode is very close to the bottom of the magnon band. Considering both a
twofold and a weak sixfold in-plane crystal field anisotropy we found that close to the spin-flop
transition the separation of this local mode from the magnon band is increased and dramatically
affected by the sixfold anisotropy. We show that quantum properties of this mode are not important.

1. Introduction

The important role of solitons in the physics of one-dimensional (1D) magnets is well known.
The specific contribution of 1D-solitons (kinks) to thermodynamic characteristics, especially
to response functions, is clearly established in a variety of experiments, see reviews [1-5].

The most direct way of detecting solitons is to observe their contributions to the cross
section of inelastic neutron scattering or to the relaxation rate of nuclear magnetic resonance
[1, 2]. These contributions mainly result from the flipping of spins connected with the motion
of the solitons. Formally this motion can be described in terms of a quasi-elastic (translational)
mode and manifests itself as a central peak at zero frequency. In addition to the translation
mode solitons can have other internal degrees of freedom, which are described by magnon
modes localized to the solitoto¢al mode}[5]. These modes should be of nonzero frequency
and, therefore, observable by standard spin resonance technique. For the highly anisotropic
1D quantum antiferromagnet CsC@@he internal mode was observed by inelastic neutron
scattering and electron paramagnetic resonance [6]. Note that this Ising-type magnet as well
as Haldane systems [1] are essentially quantum systems whose properties differ strongly from
‘classical’ soliton-bearing magnets like CsNiér TMMC, which are usually associated with
the soliton physics of 1D magnets.

Itis well known that in easy-plane antiferromagnets two types of magnon dceuigne
magnons oscillating mainly parallel to the easy plane amidof-planemagnons oscillating
perpendicularly to it. A similar distinction holds for local modes, too. The out-of-plane
internal mode corresponds to spin oscillations out of the easy plane which are localized to the
kinks. This mode was considered many years ago [7] and observed for a system of domain
walls in thin plates of thulium orthoferrite [8]. Recently it was shown [9] that this out-of-plane
mode for 1D antiferromagnets has essentially quantum nature, even faf spiy2, which
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is usually considered as semiclassical. For easy-plane antiferromagnets like TMMC out-of-
plane magnons are generally of much higher frequency than in-plane magnons, which interact
with the solitons and are manifested in soliton—magnon interference [10]. Such oscillations
are usually described in terms of a sine—Gordon (SG) equation. This equation, however, shows
no local mode of nonzero frequency. Therefore, the occurrence of such modes in easy-plane
magnets requires a treatment beyond the SG limit [11].

This article is aimed at the analysis of in-plane local modes for a real model system
like TMMC beyond the usual sine—Gordon approximation. We define the parameter range
where the in-plane local mode occurs. In contrast to out-of-plane modes, quantum effects are
negligible here.

2. Model and elementary excitations

Quasi-one-dimensional Heisenberg antiferromagnets (AFMs) like TMMC are described by
the spin Hamiltonian

M= (JS;- S+ K(S)H?+Ko(S5))? — gupH - Si} + He. (1)

ThesS; are the atomic spins located on a 1D lattice with lattice conataht> 0is the exchange
integral, andk and K, are anisotropy constants describing the strong easy-plane anisotropy
and a weak in-plane anisotropy resulting from rhombic distorsions at lower temperafure.

is the magnetic fieldy  the Bohr magneton anglthe Land factor of the magnetic ion. For
TMMCwe have/J/kp = 136K, K /kp >~ 0.3KandK,/kp >~ 4mKatT = 4.2K|[2,12]. Hg

finally denotes a very weak hexagonal anisotropy, which has not been considered in previous
calculations and will be discussed and evaluated below.

Itis convenient to describe macroscopic excitations like long-wave magnons or kink-type
solitons in terms of the nonlinear-model (see reviews [1,4]). This model is written for
a unit vector field = I(z, t), which denotes the normalized sublattice magnetization in the
continuum limit:l = (S;+1—S;)/2S. The netmagnetization of the AFNh = (S; +S:+1)/2S,
can be written as a function éfandal/d¢. Changing over to spherical coordinates- cost
andl, +il, = sing exp(ig) two coupled equations f@r andy are obtained.

This set of equations was used to analyse the kink dynamics in presence of a strong
magnetic field for rhombic and uniaxial AFMs [13-15]. An exact analytical solution is still
missing, but numerical solutions [13] and analytical approximations [14, 15] could be obtained.
For the experimentally realistic case of small in-plane anisotiopy K and for a magnetic
field far below the out-of-plane instabilithf <« H. = S«/8JK /g, the oscillation ofl
has almost in-plane character, ible>~ 7 /2. Then the equations of motion férand¢ can
essentially be simplified. Introducing the small parame#ésgK and H/H, the resulting
equation of motion can be written in a linear approximation as a functign=efp(z, r) only
and takes the form of a generalized sine—Gordon (GSG) equation:

1 dw, N 4 H?
Ja?S? 3¢  ¢? H?
Herec = 2J Sah ! is the magnon velocity in the isotropic limitv; = 0 andH = 0), and

the prime and dot denote space and time derivativgsyp) describes the effective anisotropy
energy within the easy plane, includifig;,

wa () = S2K,psin’ @ + S?Ke Sir? 3p + [(g1us H)?/8J] oS (¢ — ). ®3)

The sixfold anisotropy reflecting the hexagonal symmetry of the crystal lattice has not been
considered so far, but its account is crucial for the local mode. The lasttermin (3) describes the

29 "+ [¢ coslg — y)] - codp — y) =0. 2
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effective anisotropy imposed by a magnetic field which is applied in the easy plasehe
angle betweerHl and the easy axis (denoted by= 0, 7, see figure 1). Note that the role of
the magnetic field is twofold: First, to renormalize the anisotropy energy, equation (3), which
gives rise to the well-known spin-flop transition. Second, to break the Lorentz invariance
present atd{ = 0 (the last term in equation (2)) which is important for local mode features.
The characteristic valuH, related to out-of-plane instability is much larger than the spin-flop
field Hgp

gupH. = SvV8JK > S\/8JK, = gugHsr (4)

and describes the gap of the highest (out-of-plane) magnon branch. For TMMC we have
H. >~ 100 kOe andHsr =~ 12 kOe [10].

y

Z

Figure 1. Orientation of the antiferromagnetic spin chai),(easyK» axis (x), resulting effective
field H,sr, and local sublattice magnetizatién The ground-state orientatign of the spins is
perpendicular tdH, .

The usual elementary excitations important for 1D magnets, magnons and kinks, can
easily be extended to the GSG case, equation (2). We will briefly discuss only those
properties important for the description of localized modes. The magnon gap frequigiscy
renormalized with respect to the well known SG resylt= g H.;h ' and takes the form

20} = [(gp Herr)? COS (g0 — o) + 727 KoS? cOS bipo] /[1 + 4(H / H)? cOS (9o — ¥)].  (5)

Here we used the notatidi,, = H*—2H? HZ, cos & + Hg,., which determines the magnon
gap in the SG limitk,/K — 0 andKg = 0 [10]. ¢ denotes the ground state orientatiori of
for arbitrary values oK, and K¢ (see figure 1). In the linear approximation &g/ K- it can
be expressed by the simple relation

9o = a — 1.5(Ke/K2)(Hsr/He)? sin & 6)
whereq finally denotes the ground state orientation in the likdt= 0 and is determined by
the relations (see also [11])

sin2x = —H?sin 2y /HZ,, cos2 = (Hf, — H°cos)/HZ,.  (7)
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For large magnetic field8sr <« H <« H,., including equations (6) and (7), the magnon gap
energy takes the simple form

R2@? ~ g*uf[H? — Hf; cosy — 9HZ,(Ke/K2) cos 6/]. (8)

This dependence could be used for the evaluatiok@from experimental data. The
angular dependence of the resonance frequeépayas measured in an AFMR experiment on
TMMC at 1.7 K[12]. Apart from the superposition of three independent and well pronounced
periodic functions corresponding to the three different orientations of crystalline domains [10]
we found a slight deviation from the expected harmonic dependence, which could be attributed
to the third term in equation (8). By comparison with the theoretical expression we obtained
the estimateks/kp ~ 0.04 mK.

The kink solutions of equation (2) mainly resemble the usual SG results, but again
with renormalized parameters. The shape of an unmoving #tiglcan be described by
@ = g+ Po(z), wheredy — 0, 7 for z — Foo. In afirst approximation foKg the function
dy(z) is obtained by integration of the expression

dog)> . . .
(d—°> = sin? ®g[1 + €1 €OS Gr (3 — 4 Sirf ®g)? — 16¢; Sin 6 Sin d( oS B] (9)
X

where the space coordinate has been scaled by the width of the kink= z/Aq
with Ag = a(J/2K2)Y?Hsr/H,rs, and the small parameter = (Ke/K2)(Hsr/H,rr)?
has been introduced. For vanishing hexagonal anisotegpy= 0 the usual SG result
cosdq = tanh(x — xo) is retained.

3. Magnon modes localized on the kink

The occurrence of a local mode of nonzero frequency is a highly nontrivial property of kinks
in different models. For example, such a mode is absent in the SG model, but a well known
property of the double-sine—Gordon or th&model [4,5]. For 1D AFMSs a strong magnetic
field parallel to the easy plane can also give rise to such a local mode [11]. We will show that
the kinks of the GSG equation (2) have a non-translational local mode whieh farl and

H <« H, occurs inside the magnon gap near the bottom of the continuum. To analyse this local
mode we start from the decompositi@nz, 1) = ¢g + ®o(z) + Y (z, 1), wherepg denotes the
ground statego(z) describes a kink at rest, andz, t) a small oscillating deviation from this

kink, which allows us to linearize equation (2) with respecita, r). Assuming a harmonic
oscillation~ coswt, we obtain the eigenvalue problem

2
Ly = %[1 +4(H/H,)? cos (®g + ¢o — ¥)]¥ (10)
0

wherehwo = gugH.ss is the magnon gap in the limi#/H., e — 0. The Schidinger
operatorZ on the I.h.s. has the meaning

d2
L= 42 +{Cc0S 2D + 9¢1 c0S GDg + ¢p)}. (11)
X

The space-dependent (Wg(z)) term on the r.h.s. of equation (10) is proportional to the small
parametee, = (H/H,)?.

For vanishing hexagonal anisotrogy= 0 the eigenvalue problem (10) can approximately
be reduced to the usual Sdékiinger eigenvalue problem with ad&chl-Teller potential
V(x) = —a/cosi x with well known properties [11]. Foe; # 0 this method no longer
holds, and—apart from obtaining the trivial solution for the translational Goldstone mode by
Yo(x) = ddg(x)/dx—a different analysis has to be applied.
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For analysing the next nontrivial local mode we use a method developed in [16, 17], which
can be applied to all magnetic systems differing weakly from the SG model. The existence of
the translational modé(x) allows us to present the Sdinger operator in the factorized
form £ = £ L5, where

d _ d
£ _— 470 L0 =~ +10 12
dx Yo dx o (12)
Note thatZ )y, = 0. Introducing the new variabl¢ = £+ the eigenvalue problem (10)
takes the form

LU+ 240089 = MILPVY = (@/w0)* . (13)

On first glance, this equation does not look better than (10). But for our case (and for all such
cases where the equation of motion does not strongly differ from the SG model) it turns out to
be very convenient. Note that fey = 0 the operato ™ £® is reduced to the potentialless
form [—d?/dx? + 1]. So, for vanishing; ande, the eigenvalue problem becomes trivial. For
small nonzero values ef ande; the new eigenvalue problem (13) has no Goldstone mode, and
the local mode (if it exists) must be the lowest one. We then expect that the frequency of this
local modew; should be close to the magnon gap i.e.®, — w; < @,. By introducing the
new variables = [1 + ¢, 4 cof(¢ — ¥)]Y?¢ and using the concrete form ¢f(x), we arrive
after some lengthy algebra at a Satlinger-like equation fof. In first-order approximation
for €1 ande; it can be written in the form
2 2
—d—i H{l+eVilx) +eVa(x)}s = % :
dx w5
The ‘potentials’V; andV, have both symmetrical and antisymmetrical parts, for example

(14)

Va(x) = 3 sin? 20 cos Ay — o) — 1 sinddosin2Ay — o). (15)
For Vi (x) we present only the symmetrical part important for the local mode analysis,
[Vi(x) + Vi(—x)] = —128sirf &g cos @ cos br. (16)

In this approximation the exact ground state orientagignan be replaced by its approximate
value«, and the soliton shape functiaby(x) can be expressed by the SG result®in=

1/ coshx. Thus, we have reduced the eigenvalue problem of equation (10) to that of an ordinary
Schiddinger equation with the small potentiél= €, V; + €2V,. From general properties of
such operators it follows that they can have only one local mode. For this possible local mode
the eigenfrequenay; is close to the gap frequendéy,. Itis also known that the eigenfunction

of this mode is localized in the regioax = [&,/(®, — w)]. For the present situation

this value is much larger than the kink widtky or the localization of potential®;(x) and

Vo(x). This means that for the analysis of this mode we can replace thesHunctions,
€1Vi(x) + e2Va(x) — VoAod(x), where the coefficienty is given by the integral

o 512 8
Vo= —/ dx{Elvl(x) +eVo(x)} = EEl COS @x — :—3)62 ({0} Z)/ — o). (17)

The occurrence and properties of the local mode are determined by the sign and amplitude of
the substituté-potential. (This is the reason why antisymmetrical part¥gf) and V,(x)

are unimportant. They do not contribute Wg, but only affect higher order contributions.)

The local mode appears only f&@g > 0, which corresponds to the condition that the effective
potential has to be attractive. The approximation Byfanction leads to solutions of the form

£ = CeXp{—IxI\/(cbg - wf)/fbg} : (18)
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From the condition akt = 0, (d§/dx)|,—+0 — (d§/dx)|.—._o = Vo we obtain the final
expression for the frequency of the local mode,

W) = (I)g‘/ - %VOZ. (19)

Transforming solution (18) back to the variabje(x) and solving the simple equation
¥ = Ly the corresponding eigenfunction is obtained. In the lowest approximation on
small parameters we have

¥ (z, 1) = qo COSwt + o) tanh(z/ Ao) €XP(—/ 2(d, — wy)/@glz/Aol)  (20)

wheregg anddy have the meaning of arbitrary amplitude and phase of the oscillation. The
normalized frequency differencé{ — w;) /@, is proportional to squared small parameters. It
can be presented in the convenient form

Vo 256 4
V2@, — o)/, = 70 = S5 €1008G — 2e2C0S2y — ) (21)

which reflects the fact that both the differenbg — «; and the amplitudé’ (the r.h.s. of
equation (21)) have to be positive for the occurrence of the local mode.

The two competing terms differ strongly in their field and angular dependencies. (For
detailed discussion it is convenient to use the normalizedfietdH / Hgr.) Considering the
low field limit H? « HZ, (i.e.h < 1), we havex ~ 0 ande; ~ Kg/K, ~ 1072, For the
case of TMMC we thus obtain the value 1@ — 0.02212 cos 2/), which is positive for < 1,
and the local mode resulting from the hexagonal anisotropy is present.

In the high field limit H? > HZ. (h? > 1), the sublattice magnetization is nearly
perpendicular to the magnetic field — y ~ 7 /2) and both terms are positive, but now only
the second one, which has already been calculated in [11], will be important. Accordingly,
the frequency differencé, — «; increases proportional to* and is independent of field
orientationy .

The local mode should show up most distinctly close to the spin-flop transition, where
the competition between the hexagonal and the field-induced anisotropies is most pronounced.
Since the parameter is determined by the ratio of the hexagonal anisotrkpgand the squared
effective magnon gap which is proportionalki;fjlf and becomes very small f&#f — Hgg
the effect ofK¢ will be strongly enhanced. Close fx - the parametet; can be presented in
the form

K .
€@ = ?‘5[(1 — h?)2 + 42 sin? 2] VA, (22)
2

Fory ~ 0,7 andh — 1 the value ok, is strongly increased. Note, however, that the theory
still holds fore; < 1 only. For TMMC this condition is guaranteed for-142 > 1072, In

this case even the sign &f; is not important for the occurrence of the local mode, since the
sublattice orientation changes atHsr from 0 tosr/2. In both cases the sign of the decisive
term K cos G can be positive approachitg - either from below (foiKg > 0) or from above

(for Ks < 0). Thus, we see that the magnon mode localized on the kink can appear for small
enough but nonzero values of the hexagonal anisotropy.

Finally, we discuss possible quantum properties of this mode. It was recently shown [4, 8]
that the local mode withvector oscillations out of the easy plane and frequencies far above the
gap of the in-plane magnots, should be considered as a quantum state. E.g. its zero-point
fluctuations are not small; their amplitude is of order one. Therefore, we should also consider
the effect of zero-point fluctuations for the in-plane local mode discussed above.

Following the simple procedure used in [4], we take the varialgtet) corresponding to
the local mode of the form (20), replacigg by ¢ (), and insert it into the Lagrangian of the
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GSG equation. Inthe linear approximation the effective Lagrangiap(fotakes the standard

form of a harmonic oscillatot,;; = 1(4? — w?q?)/2. The ‘effective mass’ (the momentum

of inertia) readd = 7S[8(&, — w;)@,] /2. The m.s.r. amplitude of zero-point fluctuations

can be obtained from the standard relatigf) = 77/21&,. Combining these two relations

we see that this value is independent of specific system parameters, as was the case for the
out-of-plane mode:

(q%) = %,/2@8 — W)/, (23)

It only depends on the normalized frequency shift of the local mode with respect to the magnon
gap. That means, for the weakly localized mode considered ghéyes small and quantum
effects are unimportant for the description of its dynamics.

4. Conclusions

We have discussed the properties of internal oscillations of kink-type solitons occurring in
quasi-one-dimensional easy-plane antiferromagnets like TMMC abpv@&hese oscillations
can be interpreted as a non-Goldstone soliton—magnon bound state arising from the coupling
between in-plane and out-of-plane spin components. The local mode emerges from the bottom
of the spin-wave band. Neglecting the hexagonal anisotr&py£ 0) its frequency separation
from the lowest (i.e. uniform) magnon was found to increase asymptoticallydikdout still
remains rather small for TMMC and typical experimental conditions. Including only a weak
hexagonal anisotropy(s # 0) results in a dramatic enhancement of this separation, especially
whenH is close to the spin-flop field. Finally, in contrast to previous results on out-of-plane
modes, we have shown that quantum properties of this in-plane local mode are not important.
Since the local mode carries some nonzero net magnetization, it can be probed by standard
electron spin resonance (ESR) experiments. It was earlier shown [11] that the polarization
of this magnetization depends on the direction and magnitude of the magnetié&ffiatt
differs significantly from that of the usual uniform ESR mode. Both the different resonance
frequency and different polarization of this mode represent signatures which can be probed
in experiment. According to our calculation, the most promising condition for obtaining
experimental evidence is to measure its resonance frequency close to the spin-flop field. We
hope to stimulate future experiments which confirm (or refute) these theoretical findings.
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