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Abstract. The problem of internal oscillations of kink-type solitons in a one-dimensional easy-
plane antiferromagnet is studied by analytical methods. Apart from the Goldstone mode a second
local mode which is due to the coupling between in-plane and out-of-plane spin components has
been derived. For typical experimental conditions in a model system like (CH3)4NMnCl3 (TMMC)
the frequency of this mode is very close to the bottom of the magnon band. Considering both a
twofold and a weak sixfold in-plane crystal field anisotropy we found that close to the spin-flop
transition the separation of this local mode from the magnon band is increased and dramatically
affected by the sixfold anisotropy. We show that quantum properties of this mode are not important.

1. Introduction

The important role of solitons in the physics of one-dimensional (1D) magnets is well known.
The specific contribution of 1D-solitons (kinks) to thermodynamic characteristics, especially
to response functions, is clearly established in a variety of experiments, see reviews [1–5].

The most direct way of detecting solitons is to observe their contributions to the cross
section of inelastic neutron scattering or to the relaxation rate of nuclear magnetic resonance
[1, 2]. These contributions mainly result from the flipping of spins connected with the motion
of the solitons. Formally this motion can be described in terms of a quasi-elastic (translational)
mode and manifests itself as a central peak at zero frequency. In addition to the translation
mode solitons can have other internal degrees of freedom, which are described by magnon
modes localized to the soliton (local modes) [5]. These modes should be of nonzero frequency
and, therefore, observable by standard spin resonance technique. For the highly anisotropic
1D quantum antiferromagnet CsCoCl3 the internal mode was observed by inelastic neutron
scattering and electron paramagnetic resonance [6]. Note that this Ising-type magnet as well
as Haldane systems [1] are essentially quantum systems whose properties differ strongly from
‘classical’ soliton-bearing magnets like CsNiF3 or TMMC, which are usually associated with
the soliton physics of 1D magnets.

It is well known that in easy-plane antiferromagnets two types of magnon occur,in-plane
magnons oscillating mainly parallel to the easy plane andout-of-planemagnons oscillating
perpendicularly to it. A similar distinction holds for local modes, too. The out-of-plane
internalmode corresponds to spin oscillations out of the easy plane which are localized to the
kinks. This mode was considered many years ago [7] and observed for a system of domain
walls in thin plates of thulium orthoferrite [8]. Recently it was shown [9] that this out-of-plane
mode for 1D antiferromagnets has essentially quantum nature, even for spinS = 5/2, which
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is usually considered as semiclassical. For easy-plane antiferromagnets like TMMC out-of-
plane magnons are generally of much higher frequency than in-plane magnons, which interact
with the solitons and are manifested in soliton–magnon interference [10]. Such oscillations
are usually described in terms of a sine–Gordon (SG) equation. This equation, however, shows
no local mode of nonzero frequency. Therefore, the occurrence of such modes in easy-plane
magnets requires a treatment beyond the SG limit [11].

This article is aimed at the analysis of in-plane local modes for a real model system
like TMMC beyond the usual sine–Gordon approximation. We define the parameter range
where the in-plane local mode occurs. In contrast to out-of-plane modes, quantum effects are
negligible here.

2. Model and elementary excitations

Quasi-one-dimensional Heisenberg antiferromagnets (AFMs) like TMMC are described by
the spin Hamiltonian

H =
∑
i

{JSi · Si+1 +K(Szi )
2 +K2(S

y

i )
2 − gµBH · Si} +H6. (1)

TheSi are the atomic spins located on a 1D lattice with lattice constanta,J > 0 is the exchange
integral, andK andK2 are anisotropy constants describing the strong easy-plane anisotropy
and a weak in-plane anisotropy resulting from rhombic distorsions at lower temperature.H

is the magnetic field,µB the Bohr magneton andg the Land́e factor of the magnetic ion. For
TMMC we haveJ/kB = 13.6 K,K/kB ' 0.3 K andK2/kB ' 4 mK atT = 4.2 K [2, 12].H6

finally denotes a very weak hexagonal anisotropy, which has not been considered in previous
calculations and will be discussed and evaluated below.

It is convenient to describe macroscopic excitations like long-wave magnons or kink-type
solitons in terms of the nonlinearσ -model (see reviews [1, 4]). This model is written for
a unit vector fieldl = l(z, t), which denotes the normalized sublattice magnetization in the
continuum limit:l ≡ (Si+1−Si )/2S. The net magnetization of the AFM,m ≡ (Si+Si+1)/2S,
can be written as a function ofl and∂l/∂t . Changing over to spherical coordinateslz = cosθ
andlx + ily = sinθ exp(iϕ) two coupled equations forθ andϕ are obtained.

This set of equations was used to analyse the kink dynamics in presence of a strong
magnetic field for rhombic and uniaxial AFMs [13–15]. An exact analytical solution is still
missing, but numerical solutions [13] and analytical approximations [14, 15] could be obtained.
For the experimentally realistic case of small in-plane anisotropyK2� K and for a magnetic
field far below the out-of-plane instabilityH � Hc ≡ S

√
8JK/gµB , the oscillation ofl

has almost in-plane character, i.e.θ ' π/2. Then the equations of motion forθ andϕ can
essentially be simplified. Introducing the small parametersK2/K andH/Hc the resulting
equation of motion can be written in a linear approximation as a function ofϕ = ϕ(z, t) only
and takes the form of a generalized sine–Gordon (GSG) equation:

1

c2
ϕ̈ − ϕ′′ + 1

Ja2S2

∂wa

∂ϕ
+

4

c2

H 2

H 2
c

[ϕ̇ cos(ϕ − γ )] · cos(ϕ − γ ) = 0. (2)

Herec = 2JSah̄−1 is the magnon velocity in the isotropic limit (wa = 0 andH = 0), and
the prime and dot denote space and time derivatives.wa(ϕ) describes the effective anisotropy
energy within the easy plane, includingH6,

wa(ϕ) = S2K2 sin2 ϕ + S2K6 sin2 3ϕ + [(gµBH)
2/8J ] cos2(ϕ − γ ). (3)

The sixfold anisotropy reflecting the hexagonal symmetry of the crystal lattice has not been
considered so far, but its account is crucial for the local mode. The last term in (3) describes the
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effective anisotropy imposed by a magnetic field which is applied in the easy plane.γ is the
angle betweenH and the easy axis (denoted byϕ = 0,π , see figure 1). Note that the role of
the magnetic field is twofold: First, to renormalize the anisotropy energy, equation (3), which
gives rise to the well-known spin-flop transition. Second, to break the Lorentz invariance
present atH = 0 (the last term in equation (2)) which is important for local mode features.
The characteristic valueHc related to out-of-plane instability is much larger than the spin-flop
fieldHSF

gµBHc ≡ S
√

8JK � S
√

8JK2 ≡ gµBHSF (4)

and describes the gap of the highest (out-of-plane) magnon branch. For TMMC we have
Hc ' 100 kOe andHSF ' 12 kOe [10].

Figure 1. Orientation of the antiferromagnetic spin chain (z), easyK2 axis (x), resulting effective
field Heff , and local sublattice magnetizationl. The ground-state orientationϕ0 of the spins is
perpendicular toHeff .

The usual elementary excitations important for 1D magnets, magnons and kinks, can
easily be extended to the GSG case, equation (2). We will briefly discuss only those
properties important for the description of localized modes. The magnon gap frequencyω̃g is
renormalized with respect to the well known SG resultωg = gµBHeff h̄−1 and takes the form

h̄2ω̃2
g = [(gµBHeff )

2 cos2(ϕ0 − α) + 72JK6S
2 cos 6ϕ0]/[1 + 4(H/Hc)

2 cos2(ϕ0 − γ )]. (5)

Here we used the notationH 4
eff ≡ H 4−2H 2H 2

SF cos 2γ +H 4
SF , which determines the magnon

gap in the SG limitK2/K → 0 andK6 = 0 [10]. ϕ0 denotes the ground state orientation ofl

for arbitrary values ofK2 andK6 (see figure 1). In the linear approximation forK6/K2 it can
be expressed by the simple relation

ϕ0 = α − 1.5(K6/K2)(HSF /Heff )
2 sin 6α (6)

whereα finally denotes the ground state orientation in the limitK6 = 0 and is determined by
the relations (see also [11])

sin 2α = −H 2 sin 2γ /H 2
eff cos 2α = (H 2

SF −H 2 cos 2γ )/H 2
eff . (7)
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For large magnetic fieldsHSF � H � Hc, including equations (6) and (7), the magnon gap
energy takes the simple form

h̄2ω̃2
g ' g2µ2

B [H 2 −H 2
SF cos 2γ − 9H 2

SF (K6/K2) cos 6γ ]. (8)

This dependence could be used for the evaluation ofK6 from experimental data. The
angular dependence of the resonance frequencyω̃g was measured in an AFMR experiment on
TMMC at 1.7 K [12]. Apart from the superposition of three independent and well pronounced
periodic functions corresponding to the three different orientations of crystalline domains [10]
we found a slight deviation from the expected harmonic dependence, which could be attributed
to the third term in equation (8). By comparison with the theoretical expression we obtained
the estimateK6/kB ' 0.04 mK.

The kink solutions of equation (2) mainly resemble the usual SG results, but again
with renormalized parameters. The shape of an unmoving kink80 can be described by
ϕ = ϕ0 +80(z), where80→ 0, π for z→∓∞. In a first approximation forK6 the function
80(z) is obtained by integration of the expression(

d80

dx

)2

= sin280[1 + ε1 cos 6α(3− 4 sin280)
2 − 16ε1 sin 6α sin80 cos380] (9)

where the space coordinate has been scaled by the width of the kink:x = z/10

with 10 ≡ a(J/2K2)
1/2HSF /Heff , and the small parameterε1 ≡ (K6/K2)(HSF /Heff )

2

has been introduced. For vanishing hexagonal anisotropyε1 = 0 the usual SG result
cos80 = tanh(x − x0) is retained.

3. Magnon modes localized on the kink

The occurrence of a local mode of nonzero frequency is a highly nontrivial property of kinks
in different models. For example, such a mode is absent in the SG model, but a well known
property of the double-sine–Gordon or theϕ4 model [4, 5]. For 1D AFMs a strong magnetic
field parallel to the easy plane can also give rise to such a local mode [11]. We will show that
the kinks of the GSG equation (2) have a non-translational local mode which forε1 � 1 and
H � Hc occurs inside the magnon gap near the bottom of the continuum. To analyse this local
mode we start from the decompositionϕ(z, t) = ϕ0 +80(z) + ψ(z, t), whereϕ0 denotes the
ground state,80(z) describes a kink at rest, andψ(z, t) a small oscillating deviation from this
kink, which allows us to linearize equation (2) with respect toψ(z, t). Assuming a harmonic
oscillation∼ cosωt , we obtain the eigenvalue problem

Lψ = ω2

ω2
0

[1 + 4(H/Hc)
2 cos2(80 + ϕ0 − γ )]ψ (10)

whereh̄ω0 ≡ gµBHeff is the magnon gap in the limitH/Hc, ε1 → 0. The Schr̈odinger
operatorL on the l.h.s. has the meaning

L ≡ − d2

dx2
+ {cos 280 + 9ε1 cos 6(80 + ϕ0)}. (11)

The space-dependent (via80(z)) term on the r.h.s. of equation (10) is proportional to the small
parameterε2 ≡ (H/Hc)2.

For vanishing hexagonal anisotropyε1 = 0 the eigenvalue problem (10) can approximately
be reduced to the usual Schrödinger eigenvalue problem with a Pöschl–Teller potential
V (x) = −a/ cosh2 x with well known properties [11]. Forε1 6= 0 this method no longer
holds, and—apart from obtaining the trivial solution for the translational Goldstone mode by
ψ0(x) = d80(x)/dx—a different analysis has to be applied.



Internal oscillations of kink-type solitons 517

For analysing the next nontrivial local mode we use a method developed in [16, 17], which
can be applied to all magnetic systems differing weakly from the SG model. The existence of
the translational modeψ0(x) allows us to present the Schrödinger operator in the factorized
formL = L(+)L(−), where

L(+) ≡ d

dx
+
ψ ′0
ψ0

L(−) ≡ − d

dx
+
ψ ′0
ψ0
. (12)

Note thatL(−)ψ0 = 0. Introducing the new variablẽψ ≡ L(−)ψ the eigenvalue problem (10)
takes the form

L(−)[1 + ε2 4 cos2(ϕ − γ )]L(+)ψ̃ = (ω/ω0)
2ψ̃. (13)

On first glance, this equation does not look better than (10). But for our case (and for all such
cases where the equation of motion does not strongly differ from the SG model) it turns out to
be very convenient. Note that forε1 = 0 the operatorL(−)L(+) is reduced to the potentialless
form [−d2/dx2 + 1]. So, for vanishingε1 andε2 the eigenvalue problem becomes trivial. For
small nonzero values ofε1 andε2 the new eigenvalue problem (13) has no Goldstone mode, and
the local mode (if it exists) must be the lowest one. We then expect that the frequency of this
local modeωl should be close to the magnon gapω̃g, i.e. ω̃g − ωl � ω̃g. By introducing the
new variableξ ≡ [1 + ε2 4 cos2(ϕ − γ )]1/2ψ̃ and using the concrete form ofψ0(x), we arrive
after some lengthy algebra at a Schrödinger-like equation forξ . In first-order approximation
for ε1 andε2 it can be written in the form

−d2ξ

dx2
+ {1 + ε1V1(x) + ε2V2(x)}ξ = ω2

ω̃2
g

ξ. (14)

The ‘potentials’V1 andV2 have both symmetrical and antisymmetrical parts, for example

V2(x) = 1
4 sin2 280 cos 2(γ − α)− 1

8 sin 480 sin 2(γ − α). (15)

ForV1(x) we present only the symmetrical part important for the local mode analysis,
1
2[V1(x) + V1(−x)] = −128 sin480 cos280 cos 6α. (16)

In this approximation the exact ground state orientationϕ0 can be replaced by its approximate
valueα, and the soliton shape function80(x) can be expressed by the SG result sin80 =
1/ coshx. Thus, we have reduced the eigenvalue problem of equation (10) to that of an ordinary
Schr̈odinger equation with the small potentialV = ε1V1 + ε2V2. From general properties of
such operators it follows that they can have only one local mode. For this possible local mode
the eigenfrequencyωl is close to the gap frequencyω̃g. It is also known that the eigenfunction
of this mode is localized in the region1x = [ω̃g/(ω̃g − ωl)]. For the present situation
this value is much larger than the kink width10 or the localization of potentialsV1(x) and
V2(x). This means that for the analysis of this mode we can replace them byδ-functions,
ε1V1(x) + ε2V2(x)− V010δ(x), where the coefficientV0 is given by the integral

V0 = −
∫ ∞
−∞

dx{ε1V1(x) + ε2V2(x)} = 512

15
ε1 cos 6α − 8

3
ε2 cos 2(γ − α). (17)

The occurrence and properties of the local mode are determined by the sign and amplitude of
the substituteδ-potential. (This is the reason why antisymmetrical parts ofV1(x) andV2(x)

are unimportant. They do not contribute toV0, but only affect higher order contributions.)
The local mode appears only forV0 > 0, which corresponds to the condition that the effective
potential has to be attractive. The approximation by aδ-function leads to solutions of the form

ξ = C exp

{
−|x|

√
(ω̃2

g − ω2
l )/ω̃

2
g

}
. (18)
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From the condition atx = 0, (dξ/dx)|x→+0 − (dξ/dx)|x→−0 = V0 we obtain the final
expression for the frequency of the local mode,

ωl = ω̃g
√

1− 1
4V

2
0 . (19)

Transforming solution (18) back to the variablẽψ(x) and solving the simple equation
ψ̃ = L(−)ψ the corresponding eigenfunction is obtained. In the lowest approximation on
small parameters we have

ψ(z, t) = q0 cos(ωt + δ0) tanh(z/10) exp(−
√

2(ω̃g − ωl)/ω̃g|z/10|) (20)

whereq0 andδ0 have the meaning of arbitrary amplitude and phase of the oscillation. The
normalized frequency difference (ω̃g −ωl)/ω̃g is proportional to squared small parameters. It
can be presented in the convenient form√

2(ω̃g − ωl)/ω̃g = V0

2
= 256

15
ε1 cos 6α − 4

3
ε2 cos 2(γ − α) (21)

which reflects the fact that both the differenceω̃g − ωl and the amplitudeV0 (the r.h.s. of
equation (21)) have to be positive for the occurrence of the local mode.

The two competing terms differ strongly in their field and angular dependencies. (For
detailed discussion it is convenient to use the normalized fieldh ≡ H/HSF .) Considering the
low field limit H 2 � H 2

SF (i.e. h � 1), we haveα ' 0 andε1 ' K6/K2 ' 10−2. For the
case of TMMC we thus obtain the value (0.17− 0.022h2 cos 2γ ), which is positive forh 6 1,
and the local mode resulting from the hexagonal anisotropy is present.

In the high field limitH 2 � H 2
SF (h

2 � 1), the sublattice magnetization is nearly
perpendicular to the magnetic field(α − γ ' π/2) and both terms are positive, but now only
the second one, which has already been calculated in [11], will be important. Accordingly,
the frequency differencẽωg − ωl increases proportional toh4 and is independent of field
orientationγ .

The local mode should show up most distinctly close to the spin-flop transition, where
the competition between the hexagonal and the field-induced anisotropies is most pronounced.
Since the parameterε1 is determined by the ratio of the hexagonal anisotropyK6 and the squared
effective magnon gap which is proportional toH 2

eff and becomes very small forH → HSF
the effect ofK6 will be strongly enhanced. Close toHSF the parameterε1 can be presented in
the form

ε1 = K6

K2
[(1− h2)2 + 4h2 sin2 2γ ]−1/4. (22)

Forγ ' 0,π andh→ 1 the value ofε1 is strongly increased. Note, however, that the theory
still holds forε1 � 1 only. For TMMC this condition is guaranteed for 1− h2 � 10−2. In
this case even the sign ofK6 is not important for the occurrence of the local mode, since the
sublattice orientationα changes atHSF from 0 toπ/2. In both cases the sign of the decisive
termK6 cos 6α can be positive approachingHSF either from below (forK6 > 0) or from above
(for K6 < 0). Thus, we see that the magnon mode localized on the kink can appear for small
enough but nonzero values of the hexagonal anisotropy.

Finally, we discuss possible quantum properties of this mode. It was recently shown [4, 8]
that the local mode withl-vector oscillations out of the easy plane and frequencies far above the
gap of the in-plane magnons̃ωg should be considered as a quantum state. E.g. its zero-point
fluctuations are not small; their amplitude is of order one. Therefore, we should also consider
the effect of zero-point fluctuations for the in-plane local mode discussed above.

Following the simple procedure used in [4], we take the variableϕ(z, t) corresponding to
the local mode of the form (20), replacingq0 by q(t), and insert it into the Lagrangian of the
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GSG equation. In the linear approximation the effective Lagrangian forq(t) takes the standard
form of a harmonic oscillatorLeff = I (q̇2 − ω2

l q
2)/2. The ‘effective mass’ (the momentum

of inertia) readsI = h̄S[8(ω̃g − ωl)ω̃g]−1/2. The m.s.r. amplitude of zero-point fluctuations
can be obtained from the standard relation〈q2〉 = πh̄/2I ω̃g. Combining these two relations
we see that this value is independent of specific system parameters, as was the case for the
out-of-plane mode:

〈q2〉 = π

S

√
2(ω̃g − ωl)/ω̃g. (23)

It only depends on the normalized frequency shift of the local mode with respect to the magnon
gap. That means, for the weakly localized mode considered above〈q2〉 is small and quantum
effects are unimportant for the description of its dynamics.

4. Conclusions

We have discussed the properties of internal oscillations of kink-type solitons occurring in
quasi-one-dimensional easy-plane antiferromagnets like TMMC aboveTN . These oscillations
can be interpreted as a non-Goldstone soliton–magnon bound state arising from the coupling
between in-plane and out-of-plane spin components. The local mode emerges from the bottom
of the spin-wave band. Neglecting the hexagonal anisotropy (K6 = 0) its frequency separation
from the lowest (i.e. uniform) magnon was found to increase asymptotically likeH 4, but still
remains rather small for TMMC and typical experimental conditions. Including only a weak
hexagonal anisotropy (K6 6= 0) results in a dramatic enhancement of this separation, especially
whenH is close to the spin-flop field. Finally, in contrast to previous results on out-of-plane
modes, we have shown that quantum properties of this in-plane local mode are not important.

Since the local mode carries some nonzero net magnetization, it can be probed by standard
electron spin resonance (ESR) experiments. It was earlier shown [11] that the polarization
of this magnetization depends on the direction and magnitude of the magnetic fieldH and
differs significantly from that of the usual uniform ESR mode. Both the different resonance
frequency and different polarization of this mode represent signatures which can be probed
in experiment. According to our calculation, the most promising condition for obtaining
experimental evidence is to measure its resonance frequency close to the spin-flop field. We
hope to stimulate future experiments which confirm (or refute) these theoretical findings.
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